Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Transbound Emerg Dis ; 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2265446

ABSTRACT

Several domestic and wild animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Reported (sero)prevalence in dogs and cats vary largely depending on the target population, test characteristics, geographical location and time period. This research assessed the prevalence of SARS-CoV-2-positive cats and dogs (PCR- and/or antibody positive) in two different populations. Dogs and cats living in a household with at least one confirmed COVID-19-positive person (household (HH) study; 156 dogs and 152 cats) and dogs and cats visiting a veterinary clinic (VC) (VC study; 183 dogs and 140 cats) were sampled and tested for presence of virus (PCR) and antibodies. Potential risk factors were evaluated and follow-up of PCR-positive animals was performed to determine the duration of virus shedding and to detect potential transmission between pets in the same HH. In the HH study, 18.8% (27 dogs, 31 cats) tested SARS-CoV-2 positive (PCR- and/or antibody positive), whereas in the VC study, SARS-CoV-2 prevalence was much lower (4.6%; six dogs, nine cats). SARS-CoV-2 prevalence amongst dogs and cats was significantly higher in the multi-person HHs with two or more COVID-19-positive persons compared with multi-person HHs with only one COVID-19-positive person. In both study populations, no associations could be identified between SARS-CoV-2 status of the animal and health status, age or sex. During follow-up of PCR-positive animals, no transmission to other pets in the HH was observed despite long-lasting virus shedding in cats (up to 35 days). SARS-CoV-2 infection in dogs and cats appeared to be clearly associated with reported COVID-19-positive status of the HH. Our study supports previous findings and suggests a very low risk of pet-to-human transmission within HHs, no severe clinical signs in pets and a negligible pet-to-pet transmission between HHs.

2.
J Occup Environ Med ; 65(4): e227-e233, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2190957

ABSTRACT

OBJECTIVE: We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight into potential occupational exposure in a large meat processing plant experiencing COVID-19 clusters. Methods: Oro-nasopharyngeal SARS-CoV-2 screening was performed in 76 workers. Environmental samples ( n = 275) including air, ventilation systems, sewage, and swabs of high-touch surfaces and workers' hands were tested for SARS-CoV-2 RNA by real-time quantitative polymerase chain reaction. Results: Twenty-seven (35.5%) of the (predominantly asymptomatic) workers tested positive with modest to low viral loads (cycle threshold ≥ 29.7). Six of 203 surface swabs, 1 of 12 personal air samples, and one of four sewage samples tested positive; other samples tested negative. Conclusions: Although one third of workers tested positive, environmental contamination was limited. Widespread SARS-CoV-2 transmission via air and surfaces was considered unlikely within this plant at the time of investigation while strict COVID-19 control measures were already implemented.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , RNA, Viral , Sampling Studies , Sewage
3.
Viruses ; 14(8)2022 08 11.
Article in English | MEDLINE | ID: covidwho-1987986

ABSTRACT

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Subject(s)
COVID-19 , Farms , Mink , SARS-CoV-2 , Animals , COVID-19/epidemiology , COVID-19/veterinary , Female , Male , Mink/virology , Netherlands/epidemiology , Risk Factors , SARS-CoV-2/isolation & purification
4.
Occup Environ Med ; 78(12): 893-899, 2021 12.
Article in English | MEDLINE | ID: covidwho-1388534

ABSTRACT

OBJECTIVE: Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS: Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS: Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS: Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.


Subject(s)
Dust/analysis , Environmental Exposure , Farms , Mink/virology , Occupational Exposure , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Animals , Humans , Netherlands/epidemiology
5.
Transbound Emerg Dis ; 69(5): 3001-3007, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1388408

ABSTRACT

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Animals, Wild , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/epidemiology , Dogs , Farms , Humans , Mink , SARS-CoV-2
6.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1105407

ABSTRACT

We report the genome sequence of a Minacovirus strain identified from a fecal sample from a farmed mink (Neovison vison) in The Netherlands that was tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using real-time PCR (RT-PCR). The viral genome sequence was obtained using agnostic deep sequencing.

SELECTION OF CITATIONS
SEARCH DETAIL